Exploiting Locality and Structure for Distributed Optimization in
Multi-Agent Systems

Robin Brown!, Federico Rossi?, Kiril Soloveyz, Michael T. Wolf3, and Marco Pavone?

Abstract— A number of prototypical optimization problems
in multi-agent systems (e.g. task allocation and network load-
sharing) exhibit a highly local structure: that is, each agent’s
decision variables are only directly coupled to few other agent’s
variables through the objective function or the constraints.
Nevertheless, existing algorithms for distributed optimization
generally do not exploit the locality structure of the problem,
requiring all agents to compute or exchange the full set of
decision variables. In this paper, we develop a rigorous notion
of “locality” that relates the structural properties of a linearly-
constrained convex optimization problem (in particular, the
sparsity structure of the constraint matrix and the objective
function) to the amount of information that agents should
exchange to compute an arbitrarily high-quality approximation
to the problem from a cold-start. We leverage the notion of
locality to develop a locality-aware distributed optimization
algorithm, and we show that, for problems where individual
agents only require to know a small portion of the opti-
mal solution, the algorithm requires very limited inter-agent
communication. Numerical results show that the convergence
rate of our algorithm is directly explained by the locality
metric proposed, and that the proposed theoretical bounds are
remarkably tight; comparison to the projected sub-gradient
algorithm shows that our locality-aware algorithm requires
orders of magnitude fewer communication rounds to achieve
similar solution quality.

I. INTRODUCTION

Many problems in multi-agent control are naturally posed
as a large-scale optimization problem, where knowledge of
the problem is distributed among agents, and the collective
actions of the network are summarized by a global decision
variable. Concerns about communication overhead and pri-
vacy in such settings have motivated the need for distributed
solution algorithms that avoid explicitly gathering all of the
problem data in one location. This aligns with a prominent
setting in the literature on distributed optimization where
knowledge of the objective function is distributed, i.e., can
be expressed as the sum of privately known functions, and
agents must reach a consensus on the optimal decision vector
despite limited inter-agent communication. We refer the
reader to [1] for a recent survey on distributed optimization.

For many settings, an approach where all agents agree on
the full global decision variable is appropriate; for instance,
in rendezvous and flocking problems, all the agents’ actions
depend on a global decision variable (meeting time and
location for the former, and speed and heading for the latter).
However, when the global decision variable represents a
concatenation of individual actions, the network can still act

IR. Brown is with the Institute for Computational &
Mathematical Engineering, Stanford University, Stanford, CA, 94305,
rabrownl@stanford.edu.

2 K. Solovey and M. Pavone are with the Department of Aero-
nautics & Astronautics, Stanford University, Stanford, CA, 94305,
{kirilsol,pavone}@stanford.edu.

3E Rossi, and M. T. Wolf are with the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, Pasadena, CA, 91109, {federico.rossi,
michael.t.wolf}@jpl.nasa.gov.

optimally without ever coming to a consensus. Consider, for
example, a task allocation problem where each agent only
needs to know what tasks are assigned to itself, and is not
concerned with other agents’ assignments.

Many existing distributed optimization algorithms leverage
consensus as a core building block, and can be abstracted
as the interleaving of descent steps, to drive the solution to
the optimum, and averaging of information from neighbors
to enforce consistency. The main features differentiating
these algorithms from each other are the centralized algo-
rithm from which they are derived, and details regarding
the communication structure such as synchronous or asyn-
chronous, and directed or undirected communication links,
with the broad overarching categories being consensus-based
(sub)gradient ([2], [3], [4], [5], [6]), (sub)gradient push ([7],
[8]), dual-averaging ([9], [10]), and second-order schemes
([11], [12]).

The main objective of this paper is to provide a means of
identifying problem instances where the large communica-
tion overhead incurred by such algorithms is unnecessary.
Specifically, we will take advantage of sparsity structure
in the constraints and objective to develop a notion of
“locality”—the property that solution components can be
computed with high accuracy without full knowledge of the
problem. Under such assumptions, we will illustrate that
an algorithm that restricts information exchange to “where
it matters most” is significantly more efficient than those
which rely on eventually disseminating information through
the entire network.

Our approach builds on the work of Rebschini and
Tatikonda [13], who introduced a notion of correlation as a
structural property of optimization problems. The authors in
[13] characterize the “locality” of network-flow problems,
and show that the notion of locality can be applied to
develop efficient algorithms for “warm-start” optimization,
i.e., re-optimizing a problem when the problem is perturbed.
Moallemi and Van Roy [14] have also explored similar no-
tions of correlation, but solely as a tool to prove convergence
of min-sum message passing algorithm for unconstrained
convex optimization. To the best of our knowledge, [13]
is the only prior work to advocate for a general theory of
locality in the context of multi-agent systems.

Statement of Contribution: The contributions of this
paper are twofold. First, we formalize a notion of “locality”
in linearly constrained convex optimization problems, and
devise a metric that captures the locality of an optimization
problem by taking into account problem structure. Second,
we leverage the locality metric proposed to design a novel
distributed approximation algorithm that exploits locality to
drastically reduce the communication needed to approximate
the optimal solution over existing “locality-agnostic” algo-
rithms.

Organization: The paper is organized as follows. In
Section II we introduce our notation and terminology, and
formally provide the problem statement. In Section III,
we motivate and propose a rigorous metric measuring the
“locality” of an optimization problem. In Section IV we
show that locality can be exploited to design communication-
efficient distributed optimization algorithms. In Section V,
we validate our theoretical results on a network economic
dispatch example. Section VI contains concluding remarks
and highlights future directions. The extended version of this
paper [15] contains additional discussion, numerical results,
and the full proof of all theorems.

II. PRELIMINARIES

Notation: We use [N]:={1,...,N} to denote the 1 —N
index set, and ¢; denotes the canonical ith basis vector i.e.,
the vector with 1 in position i and zero elsewhere, where
the size of the vector will be clear from context. For a given
matrix A, A;; denotes the element in the ith row and jth
column of A. Similarly let A; » and A, ; denote the ith row and
Jjth column of A respectively. Let A* be the transpose, and
A~! be the inverse of matrix A. Given subsets I C M ,JCN,
let A; ;€ RVl denote the submatrix of A corresponding
to the rows and columns of A indexed by I and J. Similarly,
let A_; _; denote the submatrix of A obtained by removing
rows I and columns J. We define the support of a matrix
to be the set of indices of the nonzero entries, supp(4) =
{(i, j) | Aij # 0}. We define a partition of a set C to be a
collection of subsets Cj, i = 1,..,k such that J;—; Ci=C
and C;NCj =0 for all i # j.

We define an undirected graph G = (V,E) by its vertex set
V and edge set E, where elements (u,v) € E are unordered
tuples with u,v € V. We let A5 (v) :={u € V|(u,v) € E} be
the neighbors of node v. For a subset S C V, we let A5(S) =
Uves 4G (v). We define the graph distance dg(u,v) to be the
length of the shortest path between vertices u and v in G.

Problem Setup: We consider a network of N agents
collectively solving the following linearly constrained opti-
mization problem .. . o £(x)

xeRY (1)

subject to Ax=2>
where knowledge of the constraints is distributed, and the
decision vector represents a concatenation of the decisions
of individual agents. Specifically, we assume that f is known
by all of the agents, A,; is initially known by agent j only,
and agent j knows b; if A;; # 0. As a departure from a large
body of the existing literature on distributed optimization, we
consider the problem to be solved when each agent j knows
xj—that is, we do not require every agent to know the entire
optimal decision variable. With some abuse of notation, we
conflate each agent with its associated primal variable.

As a motivating example, consider a scenario where a fleet
of agents needs to collectively complete tasks at various
locations, while minimizing the cost of completing such
tasks. In this setting, the constraints ensure completion of the
tasks, while the entries of the constraint matrix may encode
the portion of a task that an agent can complete, or efficiency
when completing tasks, thus, constituting private knowledge.

While, in this paper, each agent is only associated with
a scalar variable for illustrative purposes, one can readily
extend the results in this paper to the setting where each

agent is associated with a vector. Additionally, the case where
multiple agents’ actions depend on shared variables can be
addressed by creating local copies of those variables and
enforcing consistency between agents who share that variable
through a coupling constraint.

Additionally, we assume that A € RM*V is full rank, and
the function f:RM — R is strongly convex, and twice
continuously differentiable. In Problem 1, let V(?) = [N]
denote the set of primal variables, V(@) = [M] the set of
dual variables, and S; = {i € V(P)|A;; # 0} the set of agents
participating in the jth constraint. Throughout this paper, we
fix the objective function f and the constraint matrix A, and
write x*(b) as a function of the constraint vector, b.

At this point, we make no assumptions on the commu-
nication structure of the network. In the literature on dis-
tributed optimization, the underlying communication graph
is typically assumed to be fixed, however, in practice it
can be modulated, and should be co-designed with the
solution algorithm. Our analysis of locality gives a method of
quantifying the importance of problem information to solu-
tion components, and assessing the value of communicating
certain pieces of information.

III. CLOSED-FORM LOCALITY METRIC

In this section, we propose a rigorous metric of the “lo-
cality” of an optimization problem. Specifically, in Section
II-A, we provide a method to track the cascading effects
from perturbations of the constraint vector, b, and quantify
its effect on the optimal solution. Then in III-B, we provide
conditions under which this cascading effect is damped as
it propagates; the damping allows to solve for components
of the optimal solution with only partial information of
the problem—the rate of damping naturally characterizes
the trade-off between solution accuracy and the quantity
of problem information used. Our method quantifies the
structural amount of information that each computation node
needs to receive from other nodes in the network to yield an
approximate solution with a certain accuracy. These results
are global—they hold true on the entire space of feasible
instances of Problem 1, not just in a neighborhood of the
optimal solution. This distinction will later (in Section IV)
allow us apply these results to design distributed optimization
algorithms that can converge from a cold-start (i.e., with no
prior knowledge of a “good” solution).

Our results in this section build on the analysis in [13] of
the sensitivity of optimal points to finite perturbations in the
constraint vector for linearly constrained convex optimization
problems. We first review the relevant results, and then
present our contribution.

Theorem III.1 (Sensitivity of Optimal Points - Theorem 1
of [13]). Let f:RY — R be strongly convex and twice
continuously differentiable, and A € RM*N have full row
rank. For b € Im(A), let X(x*(b)) := V2f(x*(b))~' . Then
AX(x*(b))AT is invertible, x*(b) at all b € RM, and
L) p(e) = s (p)A” (x(x (b)) @)
The above theorem relates the gradient of the optimal
solution, x*(b), to the constraint matrix and the objective
function. This result will be the building block for under-
standing, structurally, how the optimal solution depends on
problem information.

A. Sparsity of Multi-Agent Convex Optimization Problems

In many practical problems, both A and V2 f(x) are sparse
and highly structured. That is, agents only participate in a
small subset of the constraints, and the objective function is
only loosely coupled across agents. For example, constraints
might encode collision avoidance within a fleet of robots
where one robot has no chance of colliding with a robot
that is far away [16], or consumption of shared resources
where each individual resource may only be accessed by a
small fraction of the network, as is the case for transmission
link bandwidth in the setting of network utility maximization
[17]. Additionally, a common objective function is one where
the global cost function is simply the sum of individual
agents’ cost functions.

One might hope that such problems would be more
amenable to a distributed solutions compared to ones where
the constraints and objective are densely coupled among
agents. However, the cascading effects that one decision has
on the remainder of the network makes the analysis of such
problems challenging. We will use Equation (2) to reason
about this structural coupling, but the terms (AX(x*(b))AT)~!
and X(x*(b)) = V2f(x*(b))~! require careful treatment, as
the inverse of sparse matrices is typically dense (corre-
sponding to the aforementioned cascading effects). While the
structure of the original problem is obfuscated when we take
the inverses, (AZ(x*(b))AT)~! and V2f(x*(b))~!, it can be
recovered by exploiting the following key insights:

1) AX(x)AT can be expressed as (L(x)'AT)T (L(x)~'AT),
where L(x) is the Cholesky factorization of X(x).
Moreover, the sparsity pattern of L(x) can be char-
acterized in closed-form.

2) The columns of L(x) 'AT are solutions to sparse linear
systems. Explicitly, L(x) x [L(x)'AT].; = [AT]...

3) Under the appropriate spectral conditions,
(AZ(x*(b))AT)~! can be expressed as the Neumann
series Y7 o (1 — AX(x)AT).

We refer the reader to the Supplementary Material for
discussion on how to determine the sparsity patterns of
the Cholesky factorization and the solution of sparse linear
systems. ! This will naturally give rise to a distance metric
between primal and dual variables, and will allow us to
identify conditions under which sensitivity of components
of the optimal solution decays as a function of distance to
perturbations in the constraint vector. This corresponds to the
notion that one constraint will not have an out-sized effect on
the remainder of the network. We now define several graphs
that will allow us to formalize this insight and reason about
the numerical structure of the sensitivity expression using the
sparsity patterns of the terms composing the expression. For
fixed x € D, define the following undirected graphs:

o Gonj(x) = (VI7), Eabj(x) := {(i, j)I[V2f(x)];j # O}) en-
codes direct links between primal variables through the
objective function.

o Ger(x) = (VI Eegr(x) := {(i, j)|[AZ(x)AT];j # 0}) en-
codes direct links between dual variables, by tracing
through shared primal variables and the Hessian of the
objective function.

o Gop = (VO UV, Egy(x) = {0 D)4 # 0}) is

'We use the term “sparsity pattern” to refer to the pattern of non-zero
entries of a matrix.

the bipartite graph representing the primal variables
involved in each constraint.

We define Gopj = (V(”), Urep Eobj(x)) and Gegr =
(V@D Uyep Eefe(x)) to eliminate dependence on the value of
x where these graphs are evaluated. Using these graphs, the
following theorem and corollary will allow us to derive the
sparsity pattern of the terms in the previously mentioned
Neumann series.

Theorem III.2 (Sparsity Structure of Matrix Powers). For
k € Z.,, neglecting numerical cancellation?,

supp((I — AX(x)AT)*) C{(i, j)|d (vi,v;) < k}.

This theorem establishes that the sparsity pattern of a
symmetric matrix to the kth power is determined by the k-hop
neighbors in the graph representing the sparsity pattern of the
matrix. This allows us the characterize the sparsity pattern
of each term in the Neumann series Y3 (I — AX(x)AT)!, and
derive the sparsity pattern when each term of the series is
pre-multiplied by X(x)A”. We define the set Jl{((d) (i):={ve
Vldg,. (vfd)7v) <k} to be the set of vertices of distance at
most k from vertex i in Gegs.

Corollary II1.2.1 (Sparsity Structure of the Sensitivity Ex-
pression). For k € Z and i € [M]

supp (E(x)AT(I —AZ(x)AT)k) e C NG

- obj

(N (V).

The proofs of Theorem II.2 and Corollary III.2.1 rely
on combinatorially deducing the entries that must be zero
in each of the terms composing the above expressions.
The full proofs and all subsequent proofs are included in
the Supplementary Material. The consequence of Corollary
II1.2.1 is that, when we consider a truncated approximation of
the sensitivity expression, we know which components of the
approximation are guaranteed to be zero, i.e., are invariant
to locally supported perturbations in the constraint vector.

Based on the previous theorem and its corollary, we
define a measure of distance between primal variables and
dual variables that characterizes the indirect path, through
coupling in the constraints and the objective function, by
which a perturbation in the constraint propagates to primal
variables. J J

d(v”) = min{k A (Aop (V. (1))}
We also define the distance between sets of primal and dual
variables as

d(1,J) = min{d (v})P eV eny. @)

B. Spectral Conditions for Locality

We are now in a position to define our metric of locality,
and provide conditions under which this metric implies
that solution components can be solved for without full
knowledge of the problem data.

Definition III.1 (Exponential Locality). We say a linearly
constrained convex optimization problem is exponentially
local under distance metric d, with parameter A if there
exists nonnegative A < 1 and constant ¢, such that for all
subsets S C V(P) and b,A € Im(A)

1 (b+A) = (B))s]| < e A| A/ 4y

2When characterizing the sparsity pattern of a matrix, “numerical cancel-
lation” refers to when entries that are zeroed out due to the exact values of
entries in the matrix, cannot be deduced to be zero from the combinatorial
structure of the matrix alone.

Intuitively, we define exponential locality as the condition
that perturbations in the constraint vector result in pertur-
bations in the optimal solution that decay exponentially as
a function of distance between the solution components and
the perturbation. The next theorem provides conditions under
which an optimization problem is exponentially local.

Theorem IIL.3 (Spectral Conditions for Exponential Locality
of Linearly Constrained Convex Optimization Problems). A
linearly constrained convex optimization problem is expo-
nentially local with parameter A under the distance metric d
defined in (3), if sup, p(I —AX(x)AT) = A < 1, where p(M)
denotes the largest singular value of M.

Proof Sketch. Under the spectral conditions specified, we
can express (AX(x*(b))AT)~! as the Neumann series
Y o(I —AZ(x)AT)k. We split the sensitivity expression

(' (b+4) —x(b))s
d(S,supp(A))—1 1
-y < /0 Z(xg)AT(I—AZ(xg)AT)kd9> A

i=0
o 1
+) (/ Z(xg)AT(I—AZ(xg)AT)de) A
i=d(S,supp(4)) 0
where the first terms is zero from Corollary II1.2.1, and the
second term converges to zero exponentially as d(S,supp)
approaches infinity. [

We are now in a position to provide our metric of locality.

Definition IIL.2 (Locality Metric). For an optimization prob-
lem of the form of Problem 1, we define the locality metric
of the problem as

A(f,A) =supp(I—AZ(x)AT). (5)

The definition of locality also extends to classes of problems.
Explicitly, if it is known that f € F, and A € 7, we define
the locality metric of the class of problems as
ME,)= sup A(f.A). (©)
fEF,Ace/

For example, in network flow problems the class of con-
straint matrices, <7, are those representing flow conservation
constraints. The flow conservation constraint at a given node
only affects variables for flows departing or arriving at
that node; accordingly, if the objective function is separable
function of the flow on each edge, the distance metric d
corresponds to the shortest-path distance in the network flow
graph. As shown in [13], the expression 7 —AX(x)A” reduces
to the appropriately weighted graph Laplacian, and A (F, <)
can be shown in closed form to equal one [18].

C. Discussion

The locality of a problem is characterized by A and by the
distance metric, d. The value of A characterizes the impact
of the constraints on components of the optimal solution as a
function of the previously defined distance metric. If A < 1,
this impact decays exponentially at rate A, and the problem
is said to be exponentially local. The locality of a problem
naturally characterizes the quantity of problem information
necessary to solve for components of the optimal solution.
The distance metric, d, may seem esoteric as it measures
the distance between primal variables, which are inherently
tied to agents in the networks, and dual variables, which
may not have an immediate physical interpretation. However,
for many problems of interest, this distance metric can very

naturally be translated to one that is physical, primarily if
being involved in the same constraints indicates physical
proximity. For example, if constraints represent tasks that
need to be completed at some location, and only agents
within range of that location can complete the task, then
the graph distance metric is closely related to geographical
distance.

The metrics proposed in this section characterize the
locality of a specific instance of an optimization problem.
However, in most practical applications, the specific instance
of the optimization problem to be solved is not known
in advance, but is determined at run time by the agents’
states and observations, and by the environment itself. In-
deed, if the specific optimization problem to be solved was
known in advance, there would be no need to solve it
in a distributed fashion. Nevertheless, a priori knowledge
of the exact problem the network will face at the time
of execution is often not necessary to take advantage of
locality; we can still exploit knowledge of the class of
problem the system is designed to solve to estimate their
locality. As a concrete example, in Section V we validate our
theoretical results on an network economic dispatch problem
where the constraint vector b is determined at run-time. In
such a scenario, because the constraint matrix and objective
function are fixed, the metric proposed in this section can be
readily computed. However, when the constraint matrix or
objective function is determined on the fly, enumerating and
computing the locality metric for all of possible problems
may be intractable. In this case, we recommend a sampling-
based approach to estimate the locality metric of the family
of problems. Similarly, computing the locality metric of a
problem comes down to checking the spectral conditions for
the entire decision space, which may be infeasible to do
in closed form. In this case, we suggest a sampling-based
approach for estimating the locality metric.

IV. EXPLOITING LOCALITY FOR COLD-START
OPTIMIZATION

We are now in a position to exploit the locality metric
proposed in Section III to design communication-efficient
distributed optimization algorithms to approximately solve
Problem 1. Specifically, we show that the original opti-
mization problem can be partitioned into independent sub-
problems by removing constraints between sub-problems,
with the sub-problem size specified by a predetermined
bound (chosen based on the problem’s degree of locality
and an “error tolerance” parameter). Locality then guarantees
that, for a specified error tolerance, solutions of the sub-
problems can be locally “patched” together to approximately
recover the globally optimal solution by computing a cor-
rection factor for components that are near the removed
constraints (in the sense of the distance metric of Section III).
This gives rise to a two-phase optimization algorithm where
the problem is partitioned into sub-problems and solved in
the first phase, and the sub-problems are patched together in
the second phase.

This section is organized as follows. Sections IV-A and
IV-B will be dedicated to the first and second phases of the
algorithm respectively. Each of the subsections will begin
with motivation and proof of correctness from a centralized
standpoint. We will then comment on how each phase can
be implemented in a distributed manner.

While approximate solutions are typically assessed by
the sub-optimality of the objective function, this metric is
uninformative because we allow the approximation to violate
constraints—the approximation generated will surely have
a smaller objective value than the true optimum. Conse-
quently, we will measure the accuracy of our solution by
both the error in the decision variable, and the constraint
violations. We say a solution £ is an (&, €c) approximation
if |A%—b||,, < &c, and ||x* — X||, < &. We note that by strict
convexity of the objective, the optimal solution is guaranteed
to be unique. This not only ensures that our notion of an
approximate solution is well-defined, but rules out the case
of “jumps” to other optimal solutions.

A. Phase I: Fartitioning and Solving the sub-problems

In this section we show that by ignoring an appropriate
subset of the constraints, our original problem can be par-
titioned into independent sub-problems. We will also show
that the solution obtained from solving the sub-problems is
an optimal solution for a perturbed version of the original
problem. This interpretation is key for making the connection
between the “warm-start” scenario presented in [13] (com-
puting x*(b+ p) given the solution x*(b)) to the “cold-start”
scenario (computing x*(b) from scratch).

The following lemma states that, if removing a subset of
the constraints, C C V(d), and its adjacent edges partitions
G into separate connected components, then the original
problem can be partitioned into independent sub-problems.

Lemma IV.1. Let C C V(@) be a set of constraints such that
removing the vertices C and its adjacent edges partitions Gefr
in connected components, 3 Gi,...,Gp. Then,

1) There are no shared primal variables between the
connected components: Sg, NSg; =0 if i # J;

2) We can write the objective function as a sum of
additively separable functions: f(x) =Y7 | ﬁ(xSa,.)~

Proof Sketch. The result follows by relating the graph struc-
ture of Ggr to the sparsity patterns of A and X(x), specifically
by showing that separability in Geg implies that the appro-
priate components of these objects are zero. O

It follows from the previous lemma that the original
problem can be partitioned into independent sub-problems
given by minimize f;(xs;.)

xeRN ' 7)
subject to ACisSGl-xSGl- = bg,
where C; denotes the constraints only involving decision
variables in Sg;. We relate the solution of this problem to
our original problem by showing that it is consistent with
that of a perturbed variant of the original problem.

Lemma IV.2 (Implicit Constraints). Let C C V(@) and let £*
be the minimizer of ipimize f(x)
xeRN (8)
subject to A_c.x=b_c¢
If b= AX*, then £* is the minimizer of
minimize f(x)
xeRY 9)

A

subject to Ax=10>

3We say vl(d), and v(f]) are in different connected components of G if

there is no path from one to the other

Proof Sketch. The result follows from showing that the fea-
sible set of Problem (9) is a subset of the feasible set of
Problem (8). [

1) Distributed Implementation of Phase I: To implement
phase I, we need to generate the constraint cut-set, C, in
a distributed manner. This can be accomplished using the
algorithm of Linial and Saks [19] for weak-diameter graph
decomposition as a subroutine to cluster the constraints and
elect leaders for each cluster. An overview of the algorithm
is included in the Supplementary Material. The algorithm
of Linial and Saks generates a subset of the constraints
C c V@ and assigns a leader I(u) € v for each u € C,
such that, if u,v € V(d) are assigned to different leaders,
then there is no edge between them in Ggg. The connected
components Gi,...,G, as referenced in Section IV are
simply the constraints that have been assigned the same
leader, and C = y () \C’ is implicitly the set of constraints that
are not assigned to any cluster. The leader for each cluster
solves the cluster’s sub-problem and informs agents in its
cluster of their own optimal solution values.

We let x*) be the aggregate of privately known solution
components at iteration k, and initialize x9) with the solution
of the sub-problems. We define b(¥) = Ax() to be the implicit
constraints in the first phase, and / 0) = {ie y(d) |bl(-0) —b;| >
€} is the set of constraints that are violated by more than €.

B. Phase II: Patching

In the previous section, we show that the solution to the
partitioned problem is consistent with a perturbed variant of
the global problem. In this section, we derive the correction
factor to drive the solution of the partitioned problem to that
of the target problem, and show that it can be computed
efficiently and in a distributed manner if our problem is
exponentially local.

It follows from Lemma IV.2 that x(¥) is the minimizer
of

minimize f(x)
xeRY
subject to Ax = b

If the problem exhibits locality metric ;| 1, we can then
express the optimal solution as the solution of the partitioned
problem plus a correction factor. Explicitly,

x*(b) = x*(b) + i (/01 Y(xg)AT (1 —AZ(xg)AT)id6> A
i=0

R (11)
where A =b —b, and xg := x*(b+ 6A). Thanks to locality,
we can approximate £*(b) ~ x*(b) as

F(h+A) =x"(b)+ f (/01 Z(xg)AT(z—AZ(xG)AT)"de) A
i=0

(12)
where K is the number of terms of the Neumann sum used.
generated

Theorem IV.3. The solution from
taking the K-term truncation of £*(b) is an

sup, || Z(x)AT
(2l e g, a1

(10)

approximation.

Proof Sketch. The proof of the error term in x follows di-
rectly from applying the definition of locality to the truncated
approximation of £*(b). A similar error analysis can be
applied to Ax*(b) to recover the error in the constraints. [

From here on, we will refer to the number of terms in the
truncation, K, as the “radius of repair”, corresponding to the
distance around A that we compute corrections for. Theorem
IV.3 quantifies the trade-off between a number of algorithmic
design choices and solution accuracy, primarily the size of
the sub-problems chosen in the first phase, through ||A||, and
communication in the second phase, through K. Both the
relationship between ||A|| and the size of sub-problems, and
the dependence of communication volume on K are problem
specific. In Section V, we provide an example assessing both
of these trade-offs for a network economic dispatch problem.

1) Distributed Implementation of Phase II: The key in-
sight that will allow us to implement the correction step in
a distributed manner is that correction in Equation (11) can
be represented as a series of sequential updates rather than
a single update; these updates will be the target values for
each iteration of the algorithm. By continuity of X(xg)A” (1 —
AX(xg)AT)F, the path over which we integrate does not
matter, and the sequence of updates

£l +Z(/ AT (1 - AZ (2 ())AT)"de) AW

converges to x*(b) within |supp(A)| iterations, where W =
(bW +0AW), p®) =420, AV = (b— b)) g, and {SO}
partitions the support of A. We let x*) be the approx-
imation to £% by truncating the Neumann series to K
terms. These updates can be interpreted as traversing the

optimal surface to iteratively drive 5(©) to b. While the sup-
port of Y2, (fol Z()?Q)AT(I—AE(XQ)AT)idO)A may span
the entire network, the sequential updates circumvent this
by localizing the support of each of the truncated updates
vK, (JEEEUNAT (1 - AZ(RU)AT)id6) A®) around A®.

For ease of presentation, in the remainder of this section
we will assume f is quadratic so X(x) =X is constant. Trun-
cating the approximation at each iteration introduces drift
away from the optimal surface. Because this also introduces
error in the integrand, the total error at the end is not simply
the sum of the errors made at each step. Straightforward, but
tedious, modifications to our analysis can be made to account
for this drift.

Algorithm 1: Phase II—Patching Phase

input: I<),x©) from Phase I

1 while /(¥ 7é(2) do
R : AT | A0 & .

2 < min<r: T 0)| 5
3| kD =30 pyR (f‘ZAT(I—AZAT)kde)A<’<>;
a | if {ie V@D |(Azx*+D —p);| > e} CI®) then
s || AW D ekt
6 else
7 | R<R+1,goto3;
8 end
9 end

The distributed implementation of the second phase is
presented in Algorithn 1. It circumvents the fact that we
cannot use a priori knowledge of ||A|| to compute the
number of terms to include in the truncation. The algorithm
operates by iteratively including more terms and testing for
constraint violations. While an upper bound on HZATH can

be computed along with A, |I(0)| will need to be estimated,
and in general will depend on how the cut-set, C is generated.
We refer the reader to the Supplementary Material for an
example illustrating the estimation of [I(%)| based on the
mechanism for partitioning in phase L

Theorem IV.4 (Suboptimality of Phase II). If [/ is
known, Algorithm 1 is guaranteed to generate an (g, €c)
approximate solution within |/(°)| outer iterations.
Proof Sketch. The proof follows from the observation that
that the algorithm will not terminate until the constraint
bound is satisfied. The x error bound follows from lower-
bounding the radius of repair for each iteration and applying
Theorem IV.3. O
By applying Corollary III.2.1, we can characterize the sup-
port of ¥X, (Jo ZAT (I - AXAT)kd6) A®). This will allow
us to efficiently implement Algorithm 1 by only exchanging
necessary information for each update. Specifically, note that
&k —x(®); = 0 if d(v&p) ,supp(A))) > K so these solution
components do not need to be updated. Similarly, because
Af(k+l) — B(kﬂ)’

K 1
pk+D) :Ax(k)—i—AZ (/ Z(xg
Jo

i=0

This implies that if dg, (
bl@. Consequently, it sufﬁces to calculate Ap(supp(a).k+1)+%
where B(C,k) := {v |dGel'f() C) < k}, where only the
values of {vf”)|d(l(l >,supp(A)) < K +1} are necessary
for calculating Ap(supp(a) x+1)+*- Finally, the entirety of
Jo Z(xg)AT (I — AZ(x9)AT)id® does not need to be explic-
itly computed; instead (fol Y (xg)AT (1 —AZ()CQ)AT)id0> A
should be computed via a series of sparse matrix vector
products that only require information from nodes vgp) where
d(v?”) supp(AW)) < K.

We presented a leader-election based algorithm for the first
phase of the algorithm, however, other methods can also be
applied. In the Supplementary Material,we discuss scaling
of the distributed subgradient method with network size for
our numerical example, and comment on how locality can

be used to reduce the communication volume needed by the
distributed subgradient method.

)AT(I—Az(xe)AT)de)) AR

e ,supp(A)) > K +2 then b(kH)

i

V. EXPERIMENTS

In this section, we use a simplified example of network
economic dispatch to validate our theoretical results. We
simulate the distributed algorithm of Section IV on problem
instances of varying locality to demonstrate the effect of
locality on algorithm convergence and to assess the tightness
of our bounds. We also demonstrate how some of the
algorithm design trade-offs discussed in Section IV can be
assessed for this problem setting. Finally, we showcase how
the proposed distributed optimization algorithm can offer an
orders-of-magnitude speedup compared to a standard pro-
jected subgradient algorithm by exploiting problem locality.

A. Problem Setting

We consider a setting where generators are positioned in
an N x M grid, and load buses are positioned in the center
of each grid cell. Each load bus is only connected to its 4
neighboring generators, which need supply enough power to

satisfy a stochastically generated load constraint, .%;. The
costs associated with his problem are a quadratic generation

cost with coefficient %, and a quadratic transmission cost

with coefficient g Explicitly, the optimization problem rep-
resenting this setting is given by

2
minimize %Z < Z xi.j) + gz Z ‘xtzj
x i \jer (i) i jeN (i) (13)
subject to Z Xij=2;,Vj
€N (j)

For a fixed maximum sub-problem size, m X n, we
partition the original problem into sub-problems by tiling
the (M —1) x (N—1) grid of constraints with sub-grids
of size m x n, and ignoring any constraints between
tiles. Note that if o = 0, the problem fully decouples
and the optimal solution is given by splitting each load
evenly between its generators. The parameters o and
allow us to tune the locality of the problem and investigate
the performance of our algorithm for various rates of locality.

B. Effect of Locality on Convergence

In this example, we fixed the dimension of the global
problem to be 36 x 36 and allowed maximum sub-problems
of size 5 x 5, resulting in 36 sub-problems. We fixed 8 =3
and let a range from 0.5 to 3.5 The locality metric was
found to range from 0.33 to 0.76. Figure 1 plots error in
the optimization variable versus radius of repair for varying
locality metrics. The empirical results indicate that solution
accuracy depends heavily on the locality metric—in other
words, the amount of communication required to solve a
distributed optimization problem is directly related to the
locality metric we have proposed. In Figure 2, we compare
our theoretical predictions to the true behavior of the locality
aware algorithm for a representative sample of problem
instances. In all cases, our theoretical bounds on convergence
are tight.

Locality Parameter
IOU T T T T T
0.75

Absolute Error

MANN NN 035
0 2 4 6 8 10 12
Radius of Repair

Fig. 1: Effect of locality metric on convergence in the
patching phase of the optimization algorithm.

C. Phase I and Phase Il Trade-offs

We now illustrate how one can assess the algorithmic
trade-off between cluster size and required number of patch-
ing iterations presented in Section IV. We consider the
network economic dispatch problem on both a 36 x 36 grid
(referred to as the “square grid”) and a 36 x 2 grid (the “long
grid”). For both problems, we fix a =1, f =3, and sweep
the maximum sub-problem size from 2 x 2 to 35 x 35. Figure
3 shows the convergence of the patching phase for both the

Locality Parameter
0.33333

——0.45668

——0.58872
= ———0.66888
g 0.72273
23} 0.76142
e 107!
=1
S
2
O
<

102 2
10 12

Radius of Repair
Fig. 2: Theoretical convergence rate (dotted) and correspond-
ing true convergence rate (solid) for problems with varying
degree of locality.

R —

Max Sub-Problem
10

Absolute Error

<

2 3 4
Radius of Repair

0 1 2
Radius of Repair

Fig. 3: Convergence of the patching phase on the square grid
(left) and long grid (right).

square and the long grid. Notably, solution accuracy in the
first phase is not monotonic with the maximum sub-problem
size. This is a direct consequence of the fact the “tightness”
of a constraint dictates its impact on solution accuracy when
cut. While there are methods for generating sparse cuts in
a distributed manner [20], to the best of our knowledge,
generating “loose” cuts is an unexplored problem. Such an
algorithm, however, could dramatically improve our locality-
aware algorithm, and we highlight it as a potential future
direction.

Crucially, the same radius of repair for the square grid and
long grid do not equal the same volume of communication.
On the square grid, a one unit increase in the radius of
repair results in a factor of 4 multiplicative increase in
the communication volume. In contrast, on the long grid,
a one unit increase in the radius of repair results in an
additive increase of 4 times the number of broken constraints.
The interpretation of the radius of repair depends closely
on the structure of the underlying problem, and should be
carefully evaluated when assessing the trade-off between
the size of sub-problems solved in the first phase and the
communication volume needed in the second phase.

D. Comparison to the Projected Subgradient Algorithm

We now evaluate the performance of our algorithm against
the distributed projected subgradient method. The distributed
subgradient method assumes an optimization problem of the

m

form minimize Y’ fi(x)
xeRY i3
subject to x € ¥;
where each fi(x) and yx; is only known by agent i, and
messages are passed over a fixed communication topology.
Each generator’s local objective function encodes its own

(14)

transmission and generation costs, i.e.,

o
iw=%(L w) +5 ¥ 2,
jeN (i) jeN (i)
and each generators’ local constraint sets are the load con-
straints it needs to satisfy. We also assume a fixed commu-
nication graph where each generator can communicate with
other generators that it shares a constraint with.

We also initialize each node with x() i.e., the subgradient
method is warm-started with the solution after the first phase
of the algorithm to compare convergence against that of
the second phase of our algorithm. The lazy Metropolis
weighting given by, |

+1 _ k k
x{(xl +J§{k Zmax{dlk,df} (xj 'X{()
is used for the consensus step for of its attractive con-
vergence properties. We let L denote the matrix encoding
these Metropolis weights. Every agent maintains and updates
a copy of the global variable during each iteration. Let
x’(‘i) denote the ith agent’s copy of the global optimization
variable at iteration k. Then, projected subgradient updates
are given by
%k

xk.“:IIx. ZLijxk'_ig,' y
(i) =) T 80

where IT, (x) is the orthogonal projection of the point x on
the set ;. We fixed the dimension of the global problem to be
10 x 10, maximum sub-problem size to be 4 x4, o = 1, and
B = 3. These parameters partition the global problem into 4
sub-problems, and result in a locality metric of 0.39. Figure 4
plots the convergence of the distributed sub-gradient method
from a warm-start for varying values of oy alongside the con-
vergence of phase two of the locality-aware algorithm from
the same starting value. This experiment demonstrates that
the locality-aware algorithm requires orders of magnitude
fewer communication rounds than the projected subgradient
algorithm.

Absolute Error

3 4 5 6 7
Radius of Repair

Fig. 4: The left plot convergence of the projected subgradient
algorithm for step sizes, ap. The right plots error in the
patching phase versus radius of repair.

VI. CONCLUSION

We have studied the structure of linearly constrained con-
vex optimization problems and provided a method of tracking
the cascading effects of a perturbation of the remainder of the
network. This gave rise to a notion of locality suggesting that
certain global optimization problem with “local” structure
can be solved on much smaller scales. We applied this notion
of locality to design a distributed optimization algorithm
that explicitly takes advantage of this fact. We validated
our results on a network economic dispatch problem, and
provided an example of how one could assess the trade-offs
between some of the free parameters in the algorithm.

0 2 4 6 8 10 o 1

Iterations «10°

The framework of locality presented in this paper mo-
tivates further investigation for a number of interesting
questions:

« Once we have quantified the importance of problem
information to solution components, how can we use
such knowledge to systematically design optimal com-
munication protocols?

« How can locality be used to improve the efficiency of
existing distributed optimization algorithms?

ACKNOWLEDGMENTS

Part of this research was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Adminis-

tration.
REFERENCES

[1] A. Nedié, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. of the IEEE, vol. 106, no. 5, pp. 953-976, 2018.

[2] A. Nedié, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922-938, 2010.

[3] W. Shi, W. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal
on Optimization, vol. 25, no. 2, pp. 944— 966, 2015.

[4] A. I. Chen and A. Ozdaglar, “A fast distributed proximal-gradient
method,” in Allerton Conf. on Communications, Control and Comput-
ing, 2012.

[5] D. Jakoveti¢, J. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131-1146, 2014.

[6] K. Srivastava and A. Nedi¢, “Distributed asynchronous constrained
stochastic optimization,” IEEE Journal on Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 772-790, 2011.

[71 A. Nedi¢ and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” in Proc. IEEE Conf. on Decision and
Control, 2013.

[8] K. I. Tsianos and M. G. Rabbat, “Distributed consensus and optimiza-
tion under communication delays,” in Allerton Conf. on Communica-
tions, Control and Computing, 2011.

[9] K.I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in Proc. IEEE Conf. on Decision
and Control, 2012.

[10] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592-606,
2012.

[11] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schen-
ato, “Newton-raphson consensus for distributed convex optimization,”
IEEg Transactions on Automatic Control, vol. 61, no. 4, pp. 994-1009,
2016.

[12] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing,
vol. 65, no. 1, pp. 146-161, 2017.

[13] P. Rebeschini and S. Tatikonda, “Locality in network optimization,”
IEEE Transactions on Control of Network Systems, vol. 6, no. 2, pp.
487-500, 2019.

[14] C. C. Moallemi and B. Van Roy, “Convergence of min-sum message-
passing for convex optimization,” IEEE Transactions on Information
Theory, vol. 56, no. 4, pp. 2041-2050, 2010.

[15] R. A. Brown, F. Rossi, K. Solovey, M. T. Wolf, and M. Pavone,
“Exploiting locality and structure for distributed optimization in multi-
agent systems,” in European Control Conference, 2020, submitted.

[16] C. A. Bererton, “Multi-robot coordination and competition using
mixed integer and linear programs,” Ph.D. dissertation, Carnegie
Mellon University, 2004.

[17] S. H. Low and D. E. Lapsley, “Optimization flow control. i. basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861-874, 1999.

[18] D. A. Spielman. Spectral and algebraic graph theory. Available at https:
/Iwww.cs.yale.edu/homes/spielman/sagt/. Yale University.

[19] N. Linial and M. Saks, “Low diameter graph decompositions,” Com-
bintorica, vol. 13, no. 4, pp. 441-454, 1993.

[20] D. A. Spielman and S.-H. Teng, “A local clustering algorithm for mas-
sive graphs and its application to nearly linear time graph partitioning,”
SIAM Journal on Computing, vol. 42, no. 1, pp. 1-26, 2013.

[21] T. A. Davis, Direct Methods for Sparse Linear Systems. SIAM, 2006.

[22] J.-J. Climent, N. Thome, and Y. Wei, “A geometrical approach on
generalized inverses by neumann-type series,” vol. 332, pp. 533-540,
2001.

VII. APPENDIX

A. Sparse Cholesky Factorization and the Solution to Sparse
Linear Systems

The sparsity pattern of AX(x*(b))A” can be characterized
in closed form by leveraging techniques typically used to
accelerate sparse linear solvers.

By assumption, f is strongly convex and twice continu-
ously differentiable so V2f(x) is positive definite and has
a unique Cholesky factorization L(x)L(x)" = V2 f(x), where
L(x) is a lower triangular matrix with real and positive diago-
nal entries. Noting that AY(x)AT = (L(x)~'AT)T (L(x)~1AT).

Lemma VIL1 (Sparsity Structure of the Cholesky Factor-
ization). For a Cholesky factorization L(x)L(x)" = V2f(x),
neglecting numerical cancellation,
o If [sz(x)]ij =0 then L(X)ij #0;
o For indices i < j < k, L(x)ji # 0, and L(x)y; # 0 then
L(x)x; # 0.

Figure 5 depicts the fill-in structure of the sparse Cholesky
factorization.

Fig. 5: Fill-in structure of the sparse Cholesky factorization
For a given matrix lower triangular matrix L € RV*V, we
define the directed graph Gp(Vi,Er) with nodes Vi = [N]
and edges E; = {(j,i):1;; # 0}. Let ReachL(/) denotes the
set of nodes reachable from node i via paths in Gz, and
let Reachy,(S) for subset S C [N] be defined as Reachy (S) =
Uies Reachy (i)
Lemma VII.2 (Support of the Solution to a Sparse Linear
System). The support, supp(x) := {j: x; # 0}, of the solution
x to the sparse linear system Lx = b is given by supp(x) =
Reachy (supp(d))

We refer the reader to [21] for the proofs of Lemmas VII.1
- VIL.2. The sparsity patterns of both L(x) 'AT and AX(x)AT
can be derived as immediate consequences of Lemma VIL.2.

Lemma VIL3. Neglecting numerical cancellation,
supp([L(x)'AT],;) = Reach(,(S;). Furthermore,
[AZ(x)AT];j # 0 if Reachy) (S;) NReachy) (S;) # 0

B. Section III Proofs
Theorem (II1.2). For k € Z, neglecting numerical cancel-

lation,
supp((1 —AZ(x)A")*) = { (i, J)|dg () (virvy) < K}

CH{(G,)IdGeﬁ-(vz,Vj) <k}
Proof. For ease of notation, we let M = [— AX(x)AT

My, # 0 if and only if (u,v) € Eer(x). An edge constitutes a
path of length one so the result hold true for k= 1.

We now proceed by induction. Suppose for all j <
k, supp((I — AX(x)AT))) = {(u, v)|dGeff (u,v) < j} Then
M = MM, and M5 = M, M, Thus 1fM{§v+‘ #0, there
exists w such that M, # 0 and Wv # 0. Consequently,
(u,w) € Eegr(x) and there is a path of length at most k from
w to v. We concatenate these paths to find a path of length
at most k+ 1 from u to v. Similarly, if there is a path from
u to v of length at most k+ 1 in G then letting w be the
first vertex after u along this path, there is an edge from
u to w and there is a path of length at most k from w
to v. Thus, M,,, # 0 and M ;é 0, so neglecting numerical
cancellation M, M¥, Mk+l 75 0. Taking the the union over

all x, Gegr := (V(>, UXGD Eeff(x)), yields our result. O

Theorem (II1.3). A linearly constrained convex optimization
problem is exponentially local with parameter A if
sup, p(I — AZ(x)AT) = 2 < 1, where p(M) denotes the
largest singular value of the matrix M.

Proof. Tf p(I —AZ(x)AT) < 1 then ¥, (I — AX(x)AT)k con-
verges [22] Furthermore, AZ(x)AT is invertible with inverse
(AX(x)A =l =y= (I -AZ(x)AT)*. We can rewrite Equa-
tion (2)
dx*(b)
db

— $(x"(b))AT (AX(x" (b))AT) !

=¥ (x*(b))AT i(l —AZ(x"(b))AT)’

i=0

It is important that Equation (2) is based on Hadamard’s
global inverse function theorem (rather than the implicit
function theorem, which holds only locally). The implication
is that the derivative of the optimal point is continuous
everywhere along the subspace Im(A). This allows us to
apply the fundamental theorem of calculus allows us to
integrate through this expression to determine sensitivity of
the optimal point of finite perturbations in the constraint
vector. Formally,]
xX(b+A)—x"(b) = (/ dx(b%d@) A

0 do
1

S—

Z(xg)AT(AZ(xg)AT)1d0> A

I
O~ N
S—

1

l Y(xg)AT i(z —AZ(xg)AT)kd9> A
¥ (xg)AT (I — AX(xg)AT)"d0>

i=0
0 (

where xg :=x*(b+ 0A).
1
H / Z(xg)AT(I —AZ(xg)AT)*d0

I
™

S~

l

Y(xg)AT (I - AZ(xg)AT)deH

g/o HZ(xQ)AT(I—AZ(xQ)AT)kHdB
< /01 [=(x0)AT || H(IfAZ(xg)AT)kHdG
< [2" o - Az(ep)aT a0

1
< sup||Z(x)AT|| /0 p(I—AZ(xg)AT)*d6

1

< supHZ(x)ATH/ supp (I —AZ(x)AT)rdo
X 0 x

< sup ||E(x)AT I supp (I —AZ(x)AT)k

< sup [=@)AT | sup p(I—AZ(x)AT)k

x)

< sup||Z ATH?Lk

By strong convex1ty of f, sup, HE ATH exists, and is finite.
From Corollary III.2.1,

(x"(b+A)—x"(b))s
hod 1
= Y(xg)AT (I—AZ(xg)AT)kdO | A (15)
i:d<5§pp<A)) </ ’ ’ >

We take the norm of the perturbed solution to conclude the
proof.

1(x (+A) x(b))sll

1
2(xg)AT (I — AZ(x9)AT)*d6 | A
0

1
JC:
0

(/ Y (xg)AT (I — AX(xg)AT) d9>H||A||

[1A]]

Ll
o

T(1—AZ(xg)AT)* d9> |

=

Z

=d(S,supp(A

<) sup||Z(x)AT||lk||A||

i=d(S,supp(4)) *

supHZ(x)ATH A Z At
x i=d(S,supp(4))

I A

sup, HZ(x)AT H

All A,4(S,supp(4))
=

O

C. Section IV Proofs

Lemma (IV.1). Let C C V(@ be a set of constraints such that
removing the vertices C and its adjacent edges partitions Gegr
in connected components 4G, yoons Gp.

1) There are no shared primal variables between the
connected components: Sg, NSg; =0 if i # j

2) We can write the objectlve function as a sum of
additively separable functions: f(x) =Y7 Jilxsg,)

Proof. Note that if v() € G; and v() € G; are in different
connected components of G then there cannot be an edge
between vl(d) and vE-), so [A_c.Z(x)ATC .Jij = 0. Because
the diagonal elements of V2 f(x) are strictly positive, if Sg;N
Sg; # 0 then [A_c . X(x)AT c.Jij 7 0. This holds true for all
i # j and for all vl@ € G; and v§) e Gj s0 Sg,NSg, =0 if
i#j.

7éV\J/ithout loss of generality, let i > j. We will show that if
[V2£(x)];; # O then there is an edge between vgd) and vi.d) in
Gegr. Note that if [V2 £(x)];; # 0 then L(x);; # 0. Additionally,
Li>0and Lj; >0. Let vl(]d) € G; and v&d{ € G; be such that

4We say v() eV, and v() € V@ are in different connected components
of G if there does not exmt a path from one to the other

vl(»p) S Sv(d) and vﬁp)

IAT
i

€5 (@) If L(x);j #0 then [L 1ATd)] #0.
J
C*]lj #O

and there is an edge between vl@ and v§d> in Geg. If vl()

and vﬁ-d) are in different connected components in G, there

cannot be an edge between them. Consequently, [V2f(x)];; =
0 and we can separate f(x) = f(S1)+ f(S2) where S1NS, =0
and S (d csy, S y € S>. Inducting on all pairs of G; and G,

proves our result O

Note that [L™ i #0 as well so [A_¢X(x)A

Lemma (IV.2). Let C C V@ and let £ be the minimizer

of
minimize f(x)
xeRN (16)
subject to A_c x=b_c¢
and b = A%*. Then, £* is the minimizer of
minimize f(x)
xeRN (17)

subject to Ax = b

Proof. Note that on V(@ \C the implicit constraints are
equal to the true constraints. Precisely, b_¢c = b_c.

The constraints in Problem (8) are a subset of the con-
straints in Problem (9). Therefore, the feasible set of Problem
(9) is contained in the feasible set of Problem (8) Explicitly,

{x[Ax=b} = {x|A_c.x=b_¢,Ac.x=bc}
- {x|A,C7*x =b_c.}
Therefore, if £* is not optimal for Problem (9), it is also
suboptimal for Problem (8).

Theorem (IV3). The solution generated from
taking the K-term approximation of £*(b) is an
(wAHAK“ Al 1+Af7LK“ ||A||) approximation.

Proof. The error induced by truncating the sum in Equation
(11) can be expressed as
0= *(b—I—A) (b+A)

_ < / % (xg)AT (1 AZ(xg)AT)d0>
i=K+1
The magnitude of the error in the optimal solution can be

bounded as
18] < e A (18)

It follows that the truncation error converges exponentially
to zero at a rate of A; the errors in the constraints and
optimization variable both converge to zero exponentially as
well. Similarly, the constraint error is given by Ad. Taking
the norm,

sup, HZ(x)AT
1—-2

SquHAZ(x)ATHm K+1
<
48], < A L

- SUPXHAE(X)ATH%KM A
(—A)y/m
I+4 ki

v

yields the result. O

Theorem (IV.4). Algorithn 1 is guaranteed to generate an
(&, &) approximate solution within |[/(%)| outer iterations.

Proof. At iteration k, we define x*) to be the aggregate of
privately known solution components ™ = Ax®) to be the
implicit constraints, and I®) = {i € [M] : |(b®) — b),;| > €}
to be the violation set. P1ck1ng any element of our violation

set ik € I<k), our goal is to drive b%fl) to by, so we let

AW = (b; —b?k)) e, and define the following
(k+l _|_ Z (AT 1 — AZ((k))AT)ldG) A(k)
i=0
K . ‘
(k+1 +Z < AT I — AZ(())AT)ld6> A(k)
i=0
o 1)
s+ / (AT (1 - AZ(P)A T)’de) AW
i=K+1 0
where x(ek) :=x*(b®) + 0AWN). Intuitively, £*¥*1) is our target
value for iteration k4 1, x**1) is our approximation of
£+ and §*+1 is the error in our approximation.

The implicit constraints at each iteration iteration can be
expressed recursively as the sum of the implicit constraints
at the previous iteration, the target correction factor, and the
truncation error. Explicitly,

b<k+1) b()+A A6 k+1
By deﬁmtlon of 1%, if i ¢ IV then |(b*) —b);| < & so for
each i ¢ 1) there exists & > 0 such that |(b(") —b)i|+e&<e.
Let e = minigl(;@ €. Then there exists Rc such that
1+4
= ARt A < W 19
Similarly, for eaﬁh AT(T’) there exists R, such that
YA
7)LRX+1 HA(k> 20
2 10| (20)

Taking R = max(Rc, R,) allows both equations to be satisfied.

So, for each outer iteration, there is some R that allows the

inner loop to terminate. In particular, for each iteration R >

R.. We can express our total error in x as the sum of the errors

made in each other iteration, so by the triangle inequality,
1))]

IR B

(0)

N

zAT
< AR a0
= 1—A
o
‘X
= &
<&

Then, within |[I()] outer iterations, 111D = ¢ so the al-

. 0
gorithm terminates. The termination condition, 1 O — 0
ensures that the constraint bounds are met. O

D. The Linial and Saks Algorithm for Weak Diameter Graph
Decomposition [19]

In [19], Linial and Saks presented a randomized distributed
algorithm for weak-diameter graph decomposition. We use
their algorithm to partition our original problem into sub-
problems that are solved locally. For a graph G = (V,&),
with n = |V| nodes, and parameters p € [0,1], and R > 1,
their algorithm generates a subset of the nodes S C V, and
leaders [(u) for all u € S such that

1) Forallues, dg(u,l(u)) <R

2) If I(u) #1(v) then (u,v) ¢ E

3) Forall ue V@, Plues]>p(l—pf)y!
In other words, the algorithm of Linial and Saks clusters
nodes and elects cluster-heads such that no node is of
distance greater than R from its cluster-head, and nodes
belonging to different clusters are of distance at least 2
away from each other. For the purposes of generating the
constraint cut set and decomposing the original problem
into sub-problems, each G; is one of these clusters, C =

4\ J; G;, and the sub-problem associated with each cluster
is solved by the cluster-head who then relays the solution
to the appropriate agents in his cluster. The algorithm is
summarized as follows:

Algorithm 2: Linial and Saks

input: G = (V,&)

1 foreach Node y €V do

2 Select ry according to
Pr.=jl=p/(1-p), j=0,.,R—1
Plry=B] = pB

3 | Broadcast (IDy,r,) to all vertices within distance ry;

4 Select vertex C(y) of highest ID from the

broadcasts it received (including itself);
5 Join the cluster if d(y,C(y)) < r¢y);

6 end

E. Probabilistic Bounds on the Constraint Cut-Set

In phase I of the distributed algorithm, we proposed
generating the constraint cut-set using the algorithm of Linial
and Saks for weak-diameter graph decomposition [19]. The
algorithm takes p and R as parameters and guarantees that
for all u € V@, the probability that u is in C is greater than
or equal to p(1 — pf)"~!, which implies that

PlucC] <1—p(1—pfym'.
Suppose we estimate |[I(°)] < 1. We use the multiplicative
Chernoff bound to upper-bound the probability that [/(0)| > 1,
which will upper—bound the probability that

”W' HA ‘

1—
for any given 1terat10n
Letting g=1—p(l—p

that
66 "
P[17© 1 - c

where y =m-g=m(1—p(1—pR)"=1). This expression can
be used to tune the parameter, p, used for partitioning the
problem, as well as assess the trade-off between the estimate
for |/ (0)| versus the probability the algorithm succeeds. The
estimate for |1()], whether it is high or low, will ultimately
determine the communication volume in the second phase.

|
R)m’l, the Chernoff bounds says

FE. Scaling with Problem Size

We now show that for a specific instance of our example
problem, the locality metric appears to asymptotically
approach a limit that is less that one. This is significant
because for problems of this form, it means that locality
remains bounded independently of problem size. In contrast,
we show that the convergence time of a distributed
subgradient method using lazy Metropolis weights scales

with the square of the number of nodes in the network.
This implies that the total messages passed needed for the
projected distributed subgradient method scales cubically
with the number of nodes in the network.

In particular, we fix ¢ = 1 and 8 = 3, let py be the locality
metric for the problem on a N X N grid. Figure 6 plots the py
against N2, the number of nodes in the network. Noteably,
we observe that py appears to asymptotically approach 0.43

0.43

0.425 |

042

0.415

Locality Parameter

0.405

0.4 ! ' '
0 2000 4000 6000 8000 10000 12000 14000

NZ
Fig. 6: Scaling of locality metric py

Let Ly be the matrix encoding the lazy Metropolis update
on the N x N grid. Convergence of the distributed subgra-
dient method is dictated % where y(Ly) is the second
largest singular value of Ly. Specifically, we define the &-
convergence time as the minimum 7" such that

T—1.,1
f(Z’ZTO ’) ~f) s

8000
7000 |
6000
F\SOOO r
— %4000 r
B 3000 [
2000 -

1000 |

0 2000 4000 6000 8000 10000 12000 14000
2
N
. . . 1
Fig. 7: Scaling of =@
The € convergence time can be upperbounded by

max (0 ') C iy

£2
where C is a universal bounding constant for
HV%—}—%HAL*X—biHZH for all i [1]. Figure 7 shows
the scaling of % with N2. Empirically, we found that

1 . . . 2
=) scales approximately linearly with N<, and the

convergence rate approximately scales with N*. Note that
at each time step, every node passes a message to each one
of its neighbors, resulting in a total of ¢(N®) messages
passed.

G. Discussion

As noted in Section IV, it is not strictly necessary to use
a leader based algorithm for the first phase of the locality-
aware algorithm. After partitioning, we could instead use
a subgradient method. If we partition the original N x N
problem into M x Illv/l evl?]nly sized sub-problems, each sub-

problem has size 3; x ;. Based on the scaling results of

this section, the total number of messages passed in the first

phase would scale with M? (A]\;—zz) = A’\;—i We can expect

communication volume in the second phase to scale as a
function of the number of constraints cut in the first phase;
approximately 2NM constraints are cut, and only nodes
associated with the cut dual variables communicate within
their coordination radius. Consequently, the communication
volumne in the second phase scales approximately with
(NM)?. A quick back of the envelope calculation shows that
if we choose M o< N 3 , total communication volume for both
phases scales with N3, which is a dramatic improvement
over a naive implementation of the subgradient method. We
note that this improvement factor is problem dependent and
a direct consequence of the structure of the constraints and
objective function

